EL UNIVERSO Y LOS DIEZ MANDAMIENTOS

Toca un nuevo articulo, pero esta vez no es mío sino de Ricard Jiménez García, alguien con quien coincidí en el mundo digital.

El articulo es una critica al método científico


 

EL UNIVERSO Y LOS DIEZ MANDAMIENTOS

La manera como

Para los pensadores antiguos la ciencia nunca fue un sistema de creencias sino que, para ellos, tan sólo se trataba de una herramienta. Ellos siempre pensaron que la mente independiente no podía ser restringida a ningún tipo de metodología. Hoy día, hemos olvidado esta parte de su legado y es que (desafortunadamente) con demasiada facilidad olvidamos el pasado.

“Me dijeron que estaba loco y luego dijeron que mi teorema demostraba la existencia de Dios”

Kurt Gödel

Si los pensadores del mundo antiguo pudieran contemplarnos seguramente se echarían las manos a la cabeza al ver como hemos olvidado sus principios. De todo su legado nos hemos concentrado casi exclusivamente en sus resultados lógicos, que consideramos el origen de la ciencia
“moderna” y a los que otorgamos rango de “leyes universales”. Pero, al mismo tiempo, hemos desplazado (o arrinconado) los pensamientos en que se basaban al terreno de la mística.

La ciencia representa el criterio de veracidad, y la mística algo de lo que siempre se ha de dudar. La primera ofrece resultados ciertos y determinados, mientras que la segunda nunca ofrece un resultado concluyente. La ciencia dice ser independiente mientras que la mística o la metafísica siempre depende del punto de vista.

Si yo te preguntara que método es más correcto sin lugar a dudas responderás que el primero. Pero…considera esto: la ciencia se basa en las matemáticas y éstas (a su vez) se basan en principios, axiomas o condiciones de inicio que damos como ciertos, que hemos dejado de razonar sobre ellos. Por lo tanto, en último término la ciencia matemática se basa en creencias. Por otro lado, el principal postulado del lado místico o metafísico afirma que nada puede ser determinado, que es tan cierto que existe un plano material de la realidad, como otro inmaterial.

De acuerdo con el método científico nunca se podrá demostrar la existencia de un plano inmaterial (o virtual) de la realidad, simplemente porque ésta posibilidad siempre entrara en contradicción con su criterio de veracidad, que no es más que una forma mayoritaria de pensar. Pero nada impide que lo que consideramos imposible pueda hacerse algún día realidad. Lo cierto es que olvidamos la historia con facilidad.

¿Qué es el método científico en realidad?

Como intentaré demostrar el método científico no es más que un inmenso contrasentido, un razonamiento circular, un dogma que determina nuestro criterio de lógica, pero que no es más que una opinión contradictoria. Algo tan absurdo, p.e, como hablar de la “inteligencia militar”.

El método científico establece lo siguiente: cualquier presunción acerca de cómo funciona la realidad tiene que ser confirmada a base de experimentos reiterados: es lo
que se conoce como “falsabilidad”. Dichos experimentos, por otro lado, tenemos que ser capaces de poder llevarlos a cabo. Si esto no es posible, sea cual sea la hipótesis o la teoría su recorrido habrá acabado. A menos ¡Claro! que seamos capaces de encontrar una forma original de demostrarlo.

Actualmente dicho método, a nivel algo más genérico (o … más aplicado al terreno matemático) le llamamos “revisión por pares” y, básicamente, consiste en dos opiniones independientes que acaban confirmando un mismo resultado. De hecho este sistema de pensamiento tiene sus raíces en el método matemático, pues tiene el mismo funcionamiento que un Teorema. Como es sabido cualquier teorema establece simplemente una manera de llegar a un mismo resultado por dos caminos distintos.

El método científico parece seguir incluso una ley universal, la que establece que siempre y en todo momento para conocer nuestra posición necesitamos una referencia.

Este método nos cuenta que se basa en el mismo criterio doblemente independiente, dado que no sólo los resultados de los experimentos físicos han de ser correctos, sino que además, (y de forma alternativa) han de ser susceptibles de poder ser demostrados matemáticamente. Según este método, por tanto, los experimentos y su resultado agrupado (bajo la forma de un teorema) son dos caminos distintos de llegar al mismo resultado. Ahora bien…. ¿Es esto cierto o no se trata más que de un razonamiento circular?

Para entenderlo déjame primero introducir algún que otro concepto previo. La lógica “subyacente”(o menos aparente) al método científico es la siguiente: podemos hacer muchos o muchísimos experimentos, pero esto nunca será suficiente. Si todos los experimentos que realizamos dan el mismo resultado esto nos indica que una conjetura o hipótesis determinada
tiene muchas “papeletas” para ser correcta, aunque esto no asegure que siempre lo sea. Si compras (por ejemplo) más y más decimos de la lotería de navidad aumentas las probabilidades de ganar pero, a menos que compraras todas las papeletas, siempre existirá la posibilidad de que no te toque nada.

Por lo tanto no es suficiente la medición reiterada o el experimento. Tenemos que ser capaces de sintetizar un patrón de comportamiento en una regla matemática, de manera que la hipótesis siempre se cumpla para cualquier variable dada. Si somos capaces de hacer esto la teoría será verdadera y dejará de estar en el terreno de la conjetura. En ese momento…¡cambia el procedimiento! La teoría adquiere la forma de un teorema y pasa a ser “indudablemente”
cierta; Siempre que no encontremos ¡Por supuesto! un contraejemplo. En todo caso ahora la responsabilidad cambia, ahora la carga de la prueba recae en quien diga que dicha teoría es falsa.

Ciertamente es difícil de hacer esto porque, a lo largo de la historia de la civilización, nadie nunca y en ningún momento ha podido contradecir la lógica de un teorema matemático. De hecho, si algún día fuéramos capaces de hacer esto, todo nuestro sistema de lógica se derrumbaría. Hay que tener en cuenta que no tenemos más sistemas de lógica, que no tenemos un “plan B”para evitar este potencial contratiempo.

Nuestra lógica es lógica matemática y no hay más. Nos cuesta imaginar un sistema diferente de entender el Universo que no se adapte a la lógica que nos han enseñado, aunque esto no implica que no podamos hacerlo. Y…¡de hecho! a lo largo de la historia encontramos varios ejemplos. La ley de la relatividad quizás sea el mejor de todos ellos, advirtiéndonos de que tuviéramos cuidado, porque todo es cierto únicamente dependiendo del contexto.

Pero… ¡Bueno!, nos quedamos con la idea de que tenemos que ser capaces de sintetizar múltiples experimentos en un patrón matemático, ya que es inviable pensar que podemos hacer infinitos experimentos (dado que necesitaríamos infinito tiempo)

Si bien es cierto que no podemos hacer millones o billones de intentos de un mismo experimento, si que podemos hacerlo cuando en vez de una conjetura física intentamos demostrar la validez de una conjetura matemática. Por ejemplo, en el caso de algunas importantes conjeturas matemáticas se han realizado informáticamente billones de intentos que confirman sus enunciados. A pesar de esto seguimos diciendo que se trata de simples conjeturas, que no es concluyente hacer más o menos experimentos. Por lo tanto, no sólo queremos tener una importantísima probabilidad de que lo decimos es cierto, sino que en realidad lo que decimos es que queremos entender el patrón de funcionamiento, utilizando una lógica “adecuada”.

En física aplicamos nuevamente el mismo razonamiento. Múltiples experimentos pero conociendo el patrón de funcionamiento, conociendo cuales son los parámetros subyacentes, o las reglas inherentes a dicho comportamiento.

Por lo tanto, el método científico consta de dos partes: la primera (la del experimento) es importante, básica o necesaria y todo lo que tú quieras, pero no resulta concluyente de ninguna manera. Según este procedimiento el teorema matemático tiene un rango más elevado o es de un orden superior en este criterio de verificación. Este método, por tanto, está jerarquizado o, en otras palabras, uno de sus elementos no es independiente.

Lo que tenemos que preguntarnos no es tanto por qué son tas efectivas las matemáticas para describir la naturaleza, sino más bien todo lo contrario…. ¿Por qué la naturaleza tiene que expresarse siempre con la forma de un teorema matemático (que por definición es estático)? ¿Por qué tiene el Universo que adaptarse a nuestro criterio de lógica?

La mecánica cuántica nos dice claramente que: a nivel fundamental las reglas del juego no se adaptan a nuestro criterio racional. Y quizás por este motivo, después de más 100 años de su descubrimiento continuamos desconociendo su funcionamiento. Pero…a pesar de ello, seguimos pensando que tiene que ser el Universo el que se adapte a nuestra forma de pensar; Que sólo es cuestión de tiempo que lo podamos “doblegar”.

Cuando hacemos experimentos, en el fondo lo que estamos haciendo es confrontando resultados, que son derivados o dependientes de nuestras escalas o sistemas de medida. Medimos, tomamos datos, los “cruzamos”y los clasificamos… y…cuando encontramos un patrón que siempre se repite, justo en ese momento, tenemos un candidato a convertirse en una ley física.

El problema de este procedimiento es que los propios datos que tomamos ya se basan en un criterio matemático, dado que seguimos una regla lógica para llegar a ellos; No se basan en el puro azar, sino que se basan en el mismo tipo de razonamientos. Lo que estamos haciendo no es más que duplicar el procedimiento.

El mismo hecho de tomar datos ya implica un filtro matemático, justamente porque seguimos un criterio ordenado. Incluso cuando tomamos datos de forma aleatoria siempre hay un patrón subyacente de comportamiento para interpretarlos; Si no fuera así nunca llegaríamos a validar ningún resultado. Normalmente nos referimos a este proceso como algoritmo, que podemos definir vagamente como una secuencia ordenada. Pondré varios ejemplos para entenderlo.

La ley universal más representativa es la Ley de la Gravedad. Para llegar a ella Newton siguió el método científico. Basándose en los resultados de Kepler (o sus leyes de movimiento planetario), en las leyes de movimiento de Galileo, así como en sus propios experimentos dedujo que existía un patrón matemático capaz de unificar el movimiento tanto en la Tierra como en el resto del Universo. Por este motivo a la Ley de la Gravedad también se la conoce como la “Ley de los inversos de los cuadrados”. Dado que puede expresarse bajo la forma de un teorema matemático dicha Ley es Universal. Como he dicho, en teoría, no hay nada que contradiga a un Teorema, prácticamente es “inmortal”.

La Ley de la Gravedad nos dice que la fuerza de atracción entre dos masas guarda una relación inversa con el cuadrado de la distancia que las separa. Se trata de una regla subyacente e inmutable y, también por este motivo, podemos decir que el “orden matemático”está un escalón por encima del “orden físico”. Pero existe además un tercer motivo que establece claramente la superioridad de la regla lógica y es el siguiente: la ley de la gravedad siempre se cumplirá para cualquier par de masas dada y para cualquier distancia. En consecuencia la física depende del orden matemático, pero el orden matemático es independiente del orden físico, no depende de ningún criterio de medida.

Por lo tanto, cuando medimos o tomamos datos siguiendo el mismo criterio lógico o matemático (es decir, siempre) no aportamos nada nuevo. Incluso, como hacemos hoy día, la toma de datos por ordenador ya implica, para su introducción, el acatamiento de las reglas algebraicas que determinan el código binario. Por lo tanto podemos decir que la toma de datos siempre estará sesgada por nuestro criterio matemático. Siempre enfocaremos nuestra mirada hacia un tipo de datos que posteriormente podamos traspasar al lenguaje matemático. Por ejemplo, si todos nosotros hiciéramos un programa de ordenador utilizando el mismo sistema operativo, el programa sería mejor o peor, pero estará sujeto siempre a las posibilidades que el sistema operativo nos permite.

Veamos un ejemplo más al respecto. Las matemáticas dependen de los números con los que trabajan. Si fuera cierto que los números siguen algún tipo de patrón en su comportamiento (como p.e. indica la presencia de los números primos gemelos) esto sería equivalente a decir que únicamente son aspirantes a teoremas matemáticos, aquellas conjeturas que no contradigan este patrón que podríamos definir como “innato”, o independiente de nuestro criterio.
En consecuencia lo que podemos hacer en matemáticas, de forma equivalente a la toma de datos, sólo sería cierto si no incumpliera este criterio (numérico) que (por otro lado) sería independiente de ellas. Se trata, por tanto, de una cuestión de creencias, algo que podemos denominar “sesgo
lógico o conceptual” y es considerar que las matemáticas, aún siendo una creación humana, no dependen de otros conceptos aún más trascendentes. En terminología física fundamental haría la analogía referente a que el observador modifica el experimento, introduciendo también un “sesgo”
inevitable.

Esto sucede porque jamás hemos podido concluir que una idea o regla matemática no se adapte al mundo real. En ocasiones no sabemos de qué manera adaptarla, como ocurre hoy día con las dimensiones matemáticas, pero eso no impide que podamos crear modelos teóricos. La teoría de cuerdas sería un ejemplo perfecto, a pesar de no ser aceptada por los defensores del método más tradicionales.

Y es que…¡Claro! todos damos “por sentado” que nuestro mundo es tridimensional o, como mucho, tetradimensional. No damos ninguna veracidad a que no puedan existir más dimensiones adicionales, principalmente por el absurdo que supone una “toma de datos” en otras dimensiones. Si existieran, por tanto, dimensiones superiores, esto implicaría que en este “campo inmaterial” la física, como tal, no sólo no serviría, sino que ni existiría. El método científico sólo existe en el mundo real, nunca será capaz de traspasar a un potencial mundo inmaterial, que no podemos observar.

La Teoría de Cuerdas es una teoría capaz de reproducir de forma matemática y con exacta fidelidad las leyes físicas que determinan el mundo real. El problema es que es un modelo matemático que se presenta en 10 ò más dimensiones espacio-temporales. Es difícil de asimilar, pero matemáticamente es una teoría impecable y de sus ecuaciones surgen con naturalidad la teoría de la luz, la teoría de la relatividad e incluso la propia teoría de la gravedad e incluso una característica de “holografía”. Si dicha teoría fuera cierta implicaría que podríamos describir el Universo simplemente en términos matemáticos.

Para entendernos, una teoría unificada implicaría que todo el técnico y sofisticado lenguaje físico que usamos para referirnos a tantos conceptos, podría ser en su totalidad simplificado al lenguaje matemático: un lenguaje simbólico pero mucho más eficiente. Además implicaría que lo que denominamos leyes físicas, en realidad sólo serían reglas matemáticas. Además esta conclusión estaría en sintonía con la idea que tenemos de que siempre hemos podido expresar todo lo que pasa en el Universo utilizando patrones matemáticos. La irrazonable efectividad de las matemáticas para describir la naturaleza sería precisamente, no que la describa, sino que en realidad sea ella misma.

Existiría, por tanto, un mundo matemático que no puebla el mundo material de los sentidos, sino que puebla un mundo inmaterial; Como decía Platón, el mundo del alma. De hecho, existe una corriente matemática denominada “Platonismo” que
considera la existencia de este mundo inmaterial y que considera que los teoremas matemáticos son las verdaderas leyes universales. Platón no sólo defendía la existencia de lo imposible, sino que además pensaba que, en algún momento, se haría realidad, como simboliza en su “alegoría de la caverna”.

El avance en física, por consiguiente, únicamente depende de nuestra capacidad de crear nuevos patrones matemáticos, aunque la observación nos pueda proporcionar los primeros indicios. Así pues, el método científico, como “cuerpo” lógico de conocimiento o criterio de veracidad es una creencia en sí mismo, un razonamiento circular. Este sería el pensamiento: “Creo en el procedimiento porque considero que nadie puede demostrar que no es cierto. Es más, ni siquiera considero que pueda existir tal posibilidad. Aun cuando todo se reduzca a las matemáticas éstas no se pueden equivocar”Ahora bien todo esto, como planteamiento magistral, dista mucho de ser una verdad intemporal.

A finales del siglo XIX los físicos estaban convencidos de que tenían un conocimiento casi perfecto del Universo y que, a partir de ese momento, el avance científico tan sólo consistía en incorporar (de forma progresiva) el conocimiento a la tecnología. Sin ninguna duda esta forma de entender el mundo se basaba en el método científico y la idea simplemente consistía no en pensar en nuestra incapacidad de detectar nuevos patrones en el Universo, sino en dar por supuesto que no podían existir más.

Lamentablemente este pensamiento estaba muy lejos de ser correcto. Al cabo de muy poco tiempo, Max Planck detectó patrones de comportamiento que no se correspondían con las leyes establecidas. De esta manera, con el nacimiento de la mecánica cuántica las leyes de la gravedad fueron puestas en “cuarentena”. Hoy día, no obstante, debido a que nunca se ha podido demostrar el incumplimiento de la regla matemática subyacente (“los inversos de los cuadrados”) damos por correcto de que existen otros patrones de comportamiento aunque no los hayamos podido sintetizar, como es el caso de la mecánica cuántica. Todo esto vuelve a confirmar que un teorema matemático es una ley universal e intemporal, algo que va más allá de un simple lapso de tiempo en el que podamos hacer más o menos experimentos.

Unas pocas décadas antes, no obstante, los matemáticos, también se adelantaron a este pensamiento relativo a la veracidad del conocimiento. De la mano del gran matemático Bertrand Rusell, algunos de ellos aseguraron que podían establecer un sistema de condiciones o axiomas iniciales que fueran siempre ciertos y universales: un verdadero método matemático que todo el mundo usaría como referencia. Pero esta alegría duró justo tiempo de que otro matemático utilizará sus mismos planteamientos para demostrar la absurdidad de dicha creencia.

Aún a costa de desechar la supremacía de la lógica humana, Gödel creo uno de los que se consideran “teoremas fundamentales”de las matemática. Dicho teorema establece simplemente, que es absurdo pensar que un sistema matemático o cualquier “método” en general tengan siempre todas las respuestas. El método matemático como garante absoluto de la verdad duró un suspiro, aunque hoy día muchos sigan (inconscientemente) sin estar convencidos. A este teorema se le deno
mina “Teorema de incompletitud”:“Nada es completo por sí mismo”. Incluso a nivel matemático siempre necesitamos una referencia. Las matemáticas antes que deterministas son relativas.

La mecánica cuántica dio origen al concepto de “unidad”, un concepto que, en términos físicos lo llamamos “Cuanto de Planck”. De acuerdo con esta teoría, a nivel fundamental, el Universo se presenta de forma cuantificada, es decir, en forma de unidades discretas y no sólo de forma continua como se había supuesto hasta el momento. La mejor representación de esta cualidad es que podemos aislar un fotón de luz, que es una partícula “sin masa ¿?” y “fundamental” y, de hecho, la más básica. Ahora bien, nunca nos planteamos que un fotón de luz o una unidad pueda ser también un patrón de comportamiento, de la misma forma que pueda serlo la ley de la gravedad o la relatividad. Y esto precisamente es lo que da lugar a una paradoja espectacular, algo que escontrario transversalmente a todo nuestro criterio lógico de pensamiento. Este es el razonamiento:

De acuerdo con la ley de la gravedad, a medida que reducimos la distancia entre dos partículas (independientemente de su masa) aumenta la fuerza de atracción entre ellas. Esto implica que existe algo inherente en la naturaleza que hace que entre dos partículas que están muy cerca se genere una inmensa fuerza. Para dos partículas cualesquiera (aunque su masa sea infinitamente pequeña) si ambas están infinitamente cerca, la fuerza de atracción crecerá de forma exponencial, de manera que en el límite de dicha distancia (“cero”), esta fuerza tenderá a infinito. A hora bien… ¿Qué implica que exista una “infinita” fuerza subyacente entre dos partículas tan, tan pequeñas que ni siquiera podemos apreciar con nuestros elementos ópticos más avanzados?

Desde el punto de vista de la física tradicional esto no implica nada, se trata de una singularidad, una incongruencia, algo que no podamos explicar de forma racional. Pero si ahondamos en esto podemos observar a donde nos conduce esta forma de pensar.

La fuerza de la gravedad no deja de ser una fuerza uniformemente acelerada y, como tal, puede ser descrita genéricamente. Como cualquier fuerza es una relación entre espacio y tiempo. Por lo tanto, podemos hablar de fuerza o referirnos simplemente a una relación espacio-temporal. Si la fuerza que une dos partículas es infinita esto implica que existe entre ellas (de forma literal) un infinito de espacio y tiempo. Esto es lo que da lugar a la singularidad… ¿Cómo puede un sistema compuesto de dos partículas, albergar un infinito universo en su interior? ¿Cómo puede ser esto posible si nos han enseñado que matemáticamente un punto no tiene dimensión?

Si una unidad puede comportarse como un Universo, esto implica que una unidad tiene un patrón de comportamiento ¿Cuál, te preguntarás? Pues exactamente el mismo que podría tener nuestro infinito Universo. Me refiero al Universo “real”, el que podemos contemplar. Lo único que estoy diciendo con esto es que un patrón de funcionamiento de nuestro universo es su capacidad de presentarse de forma fractal u holográfica, es decir, de forma puramente virtual. Puedes definir esta relación diciendo que el Todo está incluido en la parte y no cambiaría nada. También la podrías definir como “entrelazamiento”.

Esta infinito potencial de la dualidad que contemplamos a nivel fundamental (abajo) es equivalente a la dualidad universal que, por ejemplo, nos indica la ley de la relatividad (arriba): algo que hoy sabemos que es más que una posibilidad. Como indica la teoría de Cuerdas, la única candidata potencial a ser una teoría unificada, la holografía o la fractalidad es una característica más de un universo que podemos describir tan sólo de forma matemática.

Es más, si podemos describir el Universo de forma exclusivamente matemática esto implica que el universo puede ser descrito como si fuera una simulación de sí mismo dado que, potencialmente, sería susceptible de ser reproducido en un ordenador. Un universo virtual sería independientemente de cualquier unidad física de medida. Este es un motivo más de lo absurdo de la demostración empírica que implica el método científico, dado que algo “virtual” no es más que una simple concepción mental.

Pero aún podemos ir más allá. Si hemos llegado hasta aquí, como diría Forrest Gump porqué no continuar.

¿Te imaginas poder condensar infinita información en un bit de ordenador? Pues, bueno, esto parece ser lo que hace el Universo. A este concepto podemos referirnos como entrelazamiento, o la capacidad que tiene el universo de conectar dos partículas aunque entre ellas exista una distancia infinita, o computación instantánea: que no sería más que la capacidad que tendría el Universo de procesar infinita información en un lapso de tiempo. Como es evidente parece quedar lejos el momento en que físicamente podamos hacer esto.

Si el Universo, de acuerdo con el criterio de muchos físicos, siguiera un patrón determinado por el puro azar, éste habría tenido que darse de una forma muy adecuada, para dar lugar a un Universo que parece utilizar, incluso, una inteligencia más elevada, una inteligencia que quedaría muy por encima de nuestro limitado método de veracidad. Y es que, todos estos conceptos que acabo de citar matemáticamente son imposibles de realizar, dado que constituyen una imposibilidad lógica, una imposibilidad que posteriormente incorporamos al mundo real.

Si hubiéramos seguido el método científico al pie de letra jamás hubiéramos descubierto la ley de la relatividad. Y es que esta Ley “no”pertenece a nuestro mundo habitual, no es algo que a nadie se le hubiera ocurrido nunca observar, y mucho menos experimentar. ¿A quién se le ocurriría la idea de ponerse a tomar datos subido en un avión supersónico y sincronizando dos relojes atómicos, para ver si por casualidad el tiempo fuera maleable dependiendo de la velocidad?

Antes de su descubrimiento nadie en su sano juicio hubiera admitido que el tiempo fuera relativo dependiendo de la velocidad. De hecho, tuvieron que transcurrir varios años antes que los experimentos pudieran confirmar su veracidad. En el caso de la teoría de la relatividad, un resultado matemático fue el encargado de revelarnos un patrón de comportamiento totalmente inesperado en el Universo. Desde ese momento ya nada volvió a la normalidad. Einstein no hizo ningún caso del método científico, aún cuando sea reverenciado por toda la comunidad.
De hecho, la teoría de la relatividad (en global) es totalmente incompatible con la idea de un Universo regido por principios físicos, es incompatible de forma radical con la idea de una realidad cierta y objetiva, dado que todo depende siempre del punto de vista. En el fondo, nada diferente a lo que también nos indica la mecánica cuántica (que no física) y que tan sólo se basa en la misma regla primordial, sólo que en este ámbito no la llamamos relatividad, sino probabilidad.

La teoría de la relatividad puso de relieve la existencia de un plano superior de la realidad que no podemos observar (la 4ª dimensión espacio-temporal), un plano que se sitúa exclusivamente dentro del mundo conceptual de las ideas matemáticas. Dicha teoría no parte del experimento, sino exclusivamente del más puro razonamiento.

La magia de su idea consiste en encontrar un patrón matemático de comportamiento que siempre se cumplirá. En este caso podríamos denominarlo la “Ley de los cuadrados directos”(para la relatividad especial). Para llegar a ella Einstein simplemente necesitó como herramientas unos ejes opuestos de referencia, un compás, marcar un punto de referencia, un punto de observación, vectores de movimiento y algo de imaginación. Nunca necesitó ninguna medida física como herramienta, aunque simbólicamente hiciera referencia a ellas.

Actualmente, como pasó a finales del siglo XIX, volvemos a dar por sentado que tenemos un conocimiento total de los patrones que rigen el universo. Por lo tanto, ahora la idea es tratar de unificar los dos principales patrones de comportamiento que hemos descubierto, la ley de la gravedad y la ley de la relatividad en uno solo: en una teoría unificada.
Como es normal, a nadie se le pasa por la cabeza que falte por descubrir algún otro patrón de comportamiento. Pero…quizás no se trate de llegar a una solución final en que condensar gravedad/relatividad… ¿Quién puede decir que el código fuente del Universo no es una relación triangular, algo similar a una especie de “Trinidad”?Claro que…Si así fuera ¿dónde lo buscamos? Si la teoría de la relatividad ya implicó la necesidad de medidas galácticas y velocidades siderales para poder ser verificada ¿dónde más podemos buscar si hay “algo”más que nos hayamos olvidado?

Si existiera, para encontrarlo tendríamos que seguir un procedimiento deductivo, que es justo lo que estamos haciendo en este momento. La idea es la misma que en su día expresó Sherlock Holmes: “Cuando hayas eliminado lo imposible, lo que quede por improbable que parezca, debe de ser la verdad”.

Una teoría unificada implica necesariamente que no puede depender de explicaciones posteriores. Si pudiéramos hacer esto no sería una teoría final pues implicaría que a nivel aún más subyacente podríamos decir lo mismo, pero de forma más simplificada. Sin importar que tuviéramos que cambiar de lenguaje para hacerlo. Por lo tanto, como hemos visto, una teoría unificada no puede basarse en la demostración experimental, ya que siempre podemos descender al nivel matemático, que será siempre su nivel subyacente.

Si no tiene fundamento el método experimental, como consecuencia de la inexistencia de un sistema de medida para determinar lo que es o no real…¿Qué pasa con la demostración matemática? ¿Es cierto que nunca “falla”?

Como hemos visto, el gran matemático Gödel, en contra de la creencia generalizada de que las matemáticas contenían todas las respuestas, demostró que las matemáticas son un sistema de pensamiento y, como tal, tan sólo podrán demostrar lo que está “dentro” de ellas, pero no podrán decir nada sobre sí mismas.

En un nivel físico este teorema nos indica que siempre habrá respuestas que queden fuera de nuestro criterio lógico de pensamiento, sea el que sea. De aquí la imposibilidad de poder conocer los aspectos más esenciales de nuestro universo. Nunca habrá respuestas a porqué hay algo en lugar de nada, por qué se atraen dos cuerpos o qué sentido tiene el Universo. La idea es que un sistema no puede decir nada sobre su propia existencia. Si yo digo…“pienso, luego existo” establezco una premisa lógica, pero en ningún momento puedo responder a la pregunta de por qué pienso, o porqué existe el pensamiento.

El sistema matemático puede proporcionar infinitas respuestas, pero tampoco puede decir nada acerca de su existencia. Por ejemplo, todo lo que es cierto (matemáticamente hablando) lo podemos asimilar a la superficie de una circunferencia, y todo lo que es falso fuera de ella. Pero…en el contorno de dicha circunferencia no sabemos lo que pasa, no tenemos manera de saber si en el infinito que (como concepto) representa el contorno de la circunferencia podemos encontrar soluciones que sean correctas aún cuando no podamos acceder a ellas.

Para la física el infinito no es respuesta, pero según Gödel este planteamiento es incorrecto, no sabemos lo que pasa en los límites del sistema; De hecho, esto es exactamente lo mismo que pasa en física cuando nos remontamos, por ejemplo, al Big-Bang, esa unidad imaginaria (el punto inicial de la Creación) que, como en el caso del cuanto de Planck, representa un límite universal. Esto pasa porque cuesta asimilar que el cambio de estado no es más que un movimiento del Universo y, en consecuencia, eliminamos la posibilidad de un universo cíclico o curvado; Un universo donde el futuro depende del pasado, pero también sucede lo contrario.

Einstein introdujo como una restricción arbitraria en su teoría de la relatividad, que consistía precisamente en no aceptar la existencia del plano irracional. Matemáticamente este concepto únicamente representa la respuesta imaginaria (no real) dada por una raíz cuadrada negativa.

Pero…admitiendo, incluso, estas autolimitaciones que representan nuestros axiomas o condiciones aún persiste la pregunta… ¿existe algún otro nivel subyacente incluso más básico que el nivel matemático? Si esto fuera cierto el “método científico” perdería absolutamente todo su sentido. Pues bien, esto no sólo es cierto sino que además es una consecuencia del propio conocimiento matemático.

Normalmente damos por sentado que las matemáticas son el lenguaje (aunque sea genérico) de los números. Pero esto es absolutamente incorrecto. Tal y como nos indican todos los teoremas relacionados con la teoría de números así como todas sus conjeturas matemáticas, los números siguen un orden propio en su disposición, un orden que incluso es capaz de entrelazarlos a nivel dimensional. Un ejemplo de esto sería el Teorema de Pitágoras. Según este razonamiento las matemáticas no son el lenguaje de los números, sino que son un lenguaje “sobrepuesto”, el lenguaje
simbólico que tenemos para entender cómo se relacionan los números entre ellos.

Pero, además, las matemáticas nos indican, a través de unas sencillas reglas algebraicas, que cualquier formulación numérica que podamos imaginar (siempre que no suponga una referencia circular) la podemos sintetizar en código binario, un patrón de comportamiento que (a nivel fundamental) podemos asimilar con la probabilidad, a nivel galáctico con la relatividad y, a nivel global, incluso con la propia Ley de la Gravedad (dualidad masa-distancia). Todo esto indico que el nivel más básico en que puede expresarse la realidad puede ser reducido a una relación dual, nada más.

Si la ley de la Gravedad nos indica que una unidad (como sistema dual) puede contener un infinito en su interior, matemáticamente también es cierta dicha visión. Se trata de la escala decimal, que podemos descomponer en su escala más básica a la distancia (siempre) relativa entre un 0 y un 1. Aunque, de hecho, siempre podremos hacer esto, sin importar que sistema de cuenta (decimal o no) empleemos para ello. Los números incluso son independientes de la forma que tengamos de agruparlos para formar nuestras escalas. Los números, por sí solos, son perfectos para expresar el Universo o, cuanto menos, podemos conjeturar sobre ello.

Partir de la unidad y contemplar esta dualidad universal fundamental implica un funcionamiento del Universo al que nos podemos referir como la “Unidad de los Opuestos”, aunque también podrías llamarlo “Ying-Yang”. De hecho, con esto retrocedemos a conceptos que ya fueron inventados por los antiguos. Los pitagóricos, por ejemplo, siempre pensaron que los números eran el Universo.

Incluso grandes científicos, como Newton fueron místicos. Este científico universal se refirió a este concepto expresando que la unidad es la variedad y el fundamento del Universo.

Los antiguos pensaron que los números eran el Universo y que nuestra mente era un reflejo de su mismo comportamiento. Observaron, por ejemplo, como la armonía musical que era agradable a los sentidos, seguía siempre de forma subyacente, un patrón numérico organizado y basado en la combinación de determinados números enteros. Ellos se refirieron a este concepto como la “música de las esferas”dando a entender que nuestros sentidos y quizás nuestros pensamientos seguían la misma armonía cíclica y universal. Ellos ya imaginaron una especie de universo virtual, en el que todo está vinculado dentro de unos acordes determinados.

¿Tienen los números una existencia real o imaginaria? O quizás, como pasa con la música, tienen ambas. Y es que…podemos hacer música combinando números enteros, pero la distancia que hay entre cada uno de ellos también forma parte del conjunto. En términos musicales diríamos que el “tempo” entre nota y nota forma parte de la melodía. Pero… ¡Claro! entre medio de dos notas musicales no hay nada, tan sólo silencio. El silencio sería la parte imaginaria, representada por una unidad genérica de tiempo o distancia.

Los antiguos pensaron que los números eran el universo porque dieron sentido a la existencia de una parte inmaterial de la realidad, exactamente lo mismo que pensaron los antiguos egipcios.

Si los antiguos levantaran la cabeza seguramente nos dirían que hemos olvidado el principal precepto en que ellos se basaban: “Sólo sé que no sé nada”, una de las pocas ideas que siempre es cierta independientemente de que pueda ser o no demostrada.

Esta forma de pensamiento era consecuente con su idea de qué la física, las matemáticas e incluso la ética realmente no eran ciencias (o un sistema de creencias) sino que eran herramientas. Por este motivo todas ellas dependían de una visión más elevada: la filosofía, la idea del pensamiento independiente por encima de cualquier metodología. Como decía Einstein: “La mente intuitiva es un don sagrado y la mente racional es un fiel sirviente. Hemos creado una sociedad que honra al sirviente y ha olvidado el don sagrado”

Hemos seguido siempre y en todo momento un criterio lógico de pensamiento, pero este criterio ha sido guiado por el instinto de la duda que, como la confianza o el amor no se puede razonar. ¿Por qué tendría que creer en un método que no se aplica sus propios principios?

“…No podemos solucionar el problema desde el mismo nivel de conciencia (…)”decía, también Einstein. Gödel se refería a este principio estableciendo que todo problema se comporta como un sistema, y como tal no tendrá su propia respuesta. Este principio no sólo se trata de una ley matemática, también es el principal principio de la mecánica cuántica (la indeterminación) y además el enunciado fundamental de nuestra ley más universal: la ley de la relatividad. Según ella no podemos situarnos a nosotros mismos en el espacio-tiempo si no tenemos una referencia. (Si no tuviéramos un hermano gemelo esperándonos en la tierra no podríamos establecer una diferencia en el paso del tiempo).

El método científico incumple su principal principio porque niega con total impunidad que podamos entender la realidad desde una perspectiva opuesta a su forma de pensar. Pero el Universo nos dice que todo se basa en la probabilidad, y que toda verdad siempre tendrá su opuesta.

De hecho esta afirmación es el resultado del propio método matemático. Este principio en particular se denomina “reducción al absurdo”y establece que un enunciado es cierto si lo contrario de lo que afirmamos es algo que resulta absurdo pensar. La reducción al absurdo establece que algo no es cierto si la probabilidad de que lo sea es muy, muy pequeña. Pero no podemos olvidar que una solución opuesta es una solución más. Por lo tanto, una respuesta opuesta, será absurda (o incluso ridiculizada) pero eso no implica que no sea cierta. Nunca podremos afirmar su no-existencia.

De hecho, si llevamos este teorema hasta el extremo, y pensamos que el Universo se comporta como un Todo organizado o como un sistema independiente, el Universo y la “Nada”serían conceptos equivalentes (si no tenemos un punto de referencia). El propio Universo sería independiente incluso de la existencia material.

Somos “viajeros del espacio-tiempo”, jamás podremos determinar algo con total precisión porque siempre nos estamos moviendo. Si algo define al Universo es el permanente “cambio de estado”.

Si existe un “orden natural”que es independiente de cualquier criterio humano es lógico pensar que los números son perfectos para expresar este precepto. Ahora bien, si esto fuera cierto querría decir, no sólo que los números son el Universo, sino que además, su primera escala fractal serían los “10 mandamientos”. Incluso podríamos referirnos a ellos como las 10 dimensiones que establece la teoría de cuerdas, dado que (en todo el Universo) probablemente tan sólo los números son los únicos conceptos que no tienen ningún tipo de problema para expresarse de forma dimensional.

Es una ley universal tan válida como la gravedad o la relatividad: “A igualdad de condiciones la respuesta más simple es la correcta” aunque, “en teoría”; no se pueda demostrar


216 Responses to EL UNIVERSO Y LOS DIEZ MANDAMIENTOS

  1. 201
    Kafkiano Kafkiano says:

    A los ocultistas que se creen tan listos decirles que hacer negocios o pactos con el diablo no es tan inteligente como pensais, recordad que es el maestro de la mentira. A los colaboracionistas con el diablo, deciros algo: cuando el diablo termine de utilizaros para sus propósitos y deje de usar vuestros servicios os va a aniquilar. Os estais “suicidando espiritualmente”. Sólo os queda el camino de la conversión por medio de Cristo hacia Dios Padre Todopoderoso el Creador.

  2. 202
  3. 203
    GuerrerodeSillon says:

    Kafki.
    Tapate los oidos y no mires.
    Iron Maiden – The Number Of The Beast 

  4. 204
    GuerrerodeSillon says:

    Kafki yo me alegraría de verte feliz.

    intentalo no es tan dificil.

  5. 205
    GuerrerodeSillon says:

    Donde esta Deluna?

  6. 206
    Chitauri Chitauri says:

    pulpo echando tinta:

  7. 207
  8. 208
    deluna says:

    Hola Guerrero, boniiiito!!!
    Estoy ahí, en la respuesta de tu pregunta.
    00:00
    Jajajaja
    Hr conseguido meterme en la campaña de recogida de muerdago y me paso todo el dia por el bosques subida a los árboles para poder acceder a él.
    Ojalá nos sigan haciendo pedidos y lo mismo este año no tendré que volver a trabajar la temporada de nieve en Madrid.
    Me alegra mucho tenerte otra vez por aquí.
    Mucha fuerza y amor te acompañen en tus días.

  9. 209
    Kafkiano Kafkiano says:

    Visto que mis coments 193-194-195 han sido rápidamente despistados poniendo idénticos enlaces anteriores copia pega, los vuelvo a enlazar aquí dada su notable importancia.

    BERGOGLIO MIEMBRO HONORARIO DEL MASÓNICO ROTARY CLUB

    https://radiocristiandad.wordpress.com/2013/03/18/bergoglio-miembro-honorario-del-masonico-rotary-club/

  10. 210
    Kafkiano Kafkiano says:

    Y las cosas claras

  11. 211
    GuerrerodeSillon says:

    Que guay Deluna, espero que tengais prosperidad y felicidad.

    Yo he tenido mucha suerte y he encontrado una casa a muy buen precio. El truco es que han vivido aqui una pareja con hijos durante 5 años y han dejado la casa en muy mal estado. Pues yo me he comprometido en arreglarla a cambio de un alquiler barato. La casa es preciosa y ya esta recupetando su explendor. Cuando entre por dentro era una pocilga(literalmente) llevo tres dias aquí y hoy es el primer dia que me atreví a cocinar despues de 3 dias de limpieza intensiva.
    saludos y pasate por FL para contarnos lo que quieras.
    Sabes que aqui estas en familia(de locos)
    Besotes

  12. 212
    GuerrerodeSillon says:

    Quereis reiros?

  13. 213
    GuerrerodeSillon says:

    Kafkiano.

    Si te arrodillas ante mi como tu amo y señor prometo darte riquezas, mujeres bonitas y todo lo que deseas en esta vida.

  14. 214
  15. 215
    GuerrerodeSillon says:

    Kafkiano.

    Si en el fondo yo soy mas cristiano que tu.
    1 Corintios 13Nueva Versión Internacional (NVI)El amor

    13 Si hablo en lenguashumanas y angelicales, pero no tengo amor, no soy más que un metal que resuena o un platillo que hace ruido. 2 Si tengo el don de profecía y entiendo todos los misterios y poseo todo conocimiento, y si tengo una fe que logra trasladar montañas, pero me falta el amor, no soy nada. 3 Si reparto entre los pobres todo lo que poseo, y si entrego mi cuerpo para que lo consuman las llamas, pero no tengo amor, nada gano con eso.

    4 El amor es paciente, es bondadoso. El amor no es envidioso ni jactancioso ni orgulloso.5 No se comporta con rudeza, no es egoísta, no se enoja fácilmente, no guarda rencor. 6 El amor no se deleita en la maldad sino que se regocija con la verdad. 7 Todo lo disculpa, todo lo cree, todo lo espera, todo lo soporta.

    8 El amor jamás se extingue, mientras que el don de profecía cesará, el de lenguas será silenciado y el de conocimiento desaparecerá. 9 Porque conocemos y profetizamos de manera imperfecta; 10 pero cuando llegue lo perfecto, lo imperfecto desaparecerá.11 Cuando yo era niño, hablaba como niño, pensaba como niño, razonaba como niño; cuando llegué a ser adulto, dejé atrás las cosas de niño. 12 Ahora vemos de manera indirecta y velada, como en un espejo; pero entonces veremos cara a cara. Ahora conozco de manera imperfecta, pero entonces conoceré tal y como soy conocido.

    13 Ahora, pues, permanecen estas tres virtudes: la fe, la esperanza y el amor. Pero la más excelente de ellas es el amor.

    1 Corintios 14Nueva Versión Internacional (NVI)El don de lenguas y el de profecía

    14 Empéñense en seguir el amor y ambicionen los dones espirituales, sobre todo el de profecía. 2 Porque el que habla en lenguas no habla a los demás sino a Dios. En realidad, nadie le entiende lo que dice, pues habla misterios por el Espíritu. 3 En cambio, el que profetiza habla a los demás para edificarlos, animarlos y consolarlos. 4 El que habla en lenguas se edifica a sí mismo; en cambio, el que profetiza edifica a la iglesia. 5 Yo quisiera que todos ustedes hablaran en lenguas, pero mucho más que profetizaran. El que profetiza aventaja al que habla en lenguas, a menos que éste también interprete, para que la iglesia reciba edificación.

  16. 216
    unoquelee says:

    No basta ser cristiano. El mundo sería un lugar maravilloso si se tratara de eso, Kafkiano no lo termina de comprender Guerri. Me gusta tu casa.

    Besitos a todxs